

Standard Practice for Castings, Carbon, Low-Alloy, and Martensitic Stainless Steel, Ultrasonic Examination Thereof¹

This standard is issued under the fixed designation A609/A609M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

- 1.1 This practice² covers the standards and procedures for the pulse-echo ultrasonic examination of heat-treated carbon, low-alloy, and martensitic stainless steel castings.
- 1.2 This practice is to be used whenever the inquiry, contract, order, or specification states that castings are to be subjected to ultrasonic examination in accordance with Practice A609/A 609M.
- 1.3 This practice contains two procedures. Procedure A is the original A609/A609M practice and requires calibration using a series of test blocks containing flat bottomed holes. It also provides supplementary requirements for angle beam testing. Procedure B requires calibration using a back wall reflection from a series of solid calibration blocks.

Note 1—Ultrasonic examination and radiography are not directly comparable. This examination technique is intended to complement Guide E94 in the detection of discontinuities.

- 1.4 Supplementary requirements of an optional nature are provided for use at the option of the purchaser. The supplementary requirements shall apply only when specified individually by the purchaser in the purchase order or contract.
- 1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
 - 1.5.1 Within the text, the SI units are shown in brackets.
- 1.5.2 This practice is expressed in both inch-pound units and SI units; however, unless the purchase order or contract specifies the applicable M specification designation (SI units), the inch-pound units shall apply.

¹ This practice is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.18 on Castings.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:³

A217/A217M Specification for Steel Castings, Martensitic Stainless and Alloy, for Pressure-Containing Parts, Suitable for High-Temperature Service

E94 Guide for Radiographic Examination

E317 Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments

2.2 Other Document:

SNT-TC-1A Recommended Practice for Non-Destructive Testing Personnel Qualification and Certification⁴

3. Ordering Information

- 3.1 The inquiry and order should specify which procedure is to be used. If a procedure is not specified, Procedure A shall be used.
 - 3.2 The purchaser shall furnish the following information:
- 3.2.1 Quality levels for the entire casting or portions thereof,
- 3.2.2 Sections of castings requiring longitudinal-beam examination,
- 3.2.3 Sections of castings requiring dual element examination,
- 3.2.4 Sections of castings requiring supplementary examination, using the angle-beam procedure described in Supplementary Requirement S1 in order to achieve more complete examination, and

Current edition approved May 1, 2012. Published June 2012. Originally approved in 1970. Last previous edition approved in 2007 as A609/A609M - 91 (2007). DOI: $10.1520/A0609_A0609M-12$.

² For ASME Boiler and Pressure Vessel Code applications, see related Specification SA-609 of Section II of that Code.

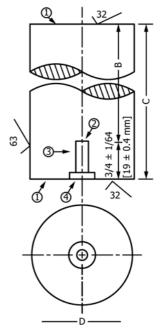
³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ Available from American Society for Nondestructive Testing (ASNT), P.O. Box 28518, 1711 Arlingate Ln., Columbus, OH 43228-0518, http://www.asnt.org.

3.2.5 Any requirements additional to the provisions of this practice.

PROCEDURE A—FLAT-BOTTOMED HOLE CALIBRATION PROCEDURE

4. Apparatus


- 4.1 Electronic Apparatus:
- 4.1.1 An ultrasonic, pulsed, reflection type of instrument that is capable of generating, receiving, and amplifying frequencies of at least 0.5 to 5 MHz.
- 4.1.2 The ultrasonic instrument shall provide linear presentation (within ± 5 %) for at least 75 % of the screen height (sweep line to top of screen). Linearity shall be determined in accordance with Practice E317 or equivalent electronic means.
- 4.1.3 The electronic apparatus shall contain a signal attenuator or calibrated gain control that shall be accurate over its useful range to ± 10 % of the nominal attenuation or gain ratio to allow measurement of signals beyond the linear range of the instrument.

4.2 Search Units:

- 4.2.1 Longitudinal Wave, internally grounded, having a ½ to 1 in. [13 to 25 mm] diameter or 1-in. [25-mm] square piezo-electric elements. Based on the signals-to-noise ratio of the response pattern of the casting, a frequency in the range from 0.5 to 5 MHz shall be used. The background noise shall not exceed 25 % of the distance amplitude correction curve (DAC). Transducers shall be utilized at their rated frequencies.
- 4.2.2 *Dual-Element*, 5-MHz, $\frac{1}{2}$ by 1-in. [13 by 25-mm], 12° included angle search units are recommended for sections 1 in. [25 mm] and under.
- 4.2.3 Other frequencies and sizes of search units may be used for evaluating and pinpointing indications.

4.3 Reference Blocks:

- 4.3.1 Reference blocks containing flat-bottom holes shall be used to establish test sensitivity in accordance with 8.2.
- 4.3.2 Reference blocks shall be made from cast steels that give an acoustic response similar to the castings being examined.
- 4.3.3 The design of reference blocks shall be in accordance with Fig. 1, and the basic set shall consist of those blocks listed in Table 1. When section thicknesses over 15 in. [380-mm] are to be inspected, an additional block of the maximum test thickness shall be made to supplement the basic set.
- 4.3.4 Machined blocks with $\frac{3}{32}$ -in. [2.4-mm] diameter flat-bottom holes at depths from the entry surface of $\frac{1}{8}$ in. [3 mm], $\frac{1}{2}$ in. [13 mm], or $\frac{1}{2}$ t and $\frac{3}{4}$ in. [19 mm], or $\frac{3}{4}$ t (where t = thickness of the block) shall be used to establish the DAC for the dual-element search units (see Fig. 2).
- 4.3.5 Each reference block shall be permanently identified along the side of the block indicating the material and the block identification.
- 4.4 *Couplant*—A suitable couplant having good wetting characteristics shall be used between the search unit and examination surface. The same couplant shall be used for calibrations and examinations.

Note 1—Opposite ends of reference block shall be flat and parallel within 0.001 in. [0.025 mm].

Note 2—Bottom of flat-bottom hole shall be flat within 0.002-in. [0.051 mm] and the finished diameter shall be $\frac{1}{4} + 0.002$ in. [6.4 + 0.050].

Note 3—Hole shall be straight and perpendicular to entry surface within 0° , 30 min and located within 1/32 in. [0.80 mm] of longitudinal axis.

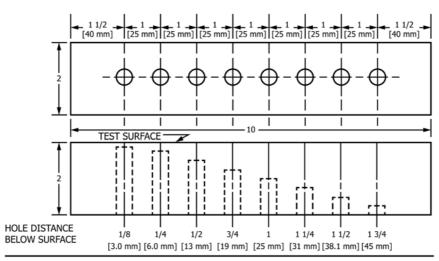
Note 4—Counter bore shall be $\frac{1}{2}$ in. [15.0 mm] diameter by $\frac{1}{8}$ in. [5 mm] deep.

FIG. 1 Ultrasonic Standard Reference Block

TABLE 1 Dimensions and Identification of Reference Blocks in the Basic Set (See Fig. 1)

Hole Diameter in 1/64 ths, in. [mm]	Metal Distance (B), in. ^A [mm]	Overall Length (C), in. [mm]	Width or Diameter (D), min, in. [mm]	Block Identifi- cation Number
16 [6.4]	1 [25]	13/4 [45]	2 [50]	16-0100
16 [6.4]	2 [50]	23/4 [70]	2 [50]	16-0200
16 [6.4]	3 [75]	3¾ [95]	2 [50]	16-0300
16 [6.4]	6 [150]	6¾ [170]	3 [75]	16-0600
16 [6.4]	10 [255]	10¾ [275]	4 [100]	16-1000
16 [6.4]	В	B + 3/4 [B + 20]	5 [125]	16-B00 ^B

A Tolerance ±1/8 in. [3 mm].


5. Personnel Requirements

5.1 Personnel performing ultrasonic examination in accordance with this practice shall be qualified and certified in accordance with a written procedure conforming to Recommended Practice No. SNT-TC-1A or another national standard acceptable to both the purchaser and the supplier.

6. Casting Conditions

6.1 Castings shall receive at least an austenitizing heat treatment before being ultrasonically examined.

 $^{^{\}it B}$ Additional supplemental blocks for testing thickness greater than 10 in. [250 mm], see 4.3.3.

Note 1-Entrant surface shall be 250 µin. [6.3 µm] or finer.

Note 2— The $\frac{3}{32}$ -in. [2.4 mm] flat-bottom hole must be flat within 0.002 in. [0.05 mm]. Diameter must be within +0.005 in. [0.13 mm] of the required diameter. Hole axis must be perpendicular to the block and within an angle of 0° , 30 min.

Note 3—Hole shall be plugged following checking for ultrasonic response.

in.	[mm]	in.	[mm]
1/8	[3]	11/4	[32]
1/4	[6]	1½	[38]
1/2	[13]	13⁄4	[44]
3/4	[19.0]	2	[50]
1	[25]	10	[254]

FIG. 2 Ultrasonic Standard Reference Block for Dual-Search Unit Calibration

- 6.2 Test surfaces of castings shall be free of material that will interfere with the ultrasonic examination. They may be as cast, blasted, ground, or machined.
- 6.3 The ultrasonic examination shall be conducted prior to machining that prevents an effective examination of the casting.

7. Test Conditions

- 7.1 To assure complete coverage of the specified casting section, each pass of the search unit shall overlap by at least $10\,\%$ of the width of the transducer.
 - 7.2 The rate of scanning shall not exceed 6 in./s [150 mm/s].
- 7.3 The ultrasonic beam shall be introduced perpendicular to the examination surface.

8. Procedure

- 8.1 Adjust the instrument controls to position the first back reflection for the thickness to be tested at least one half of the distance across the instrument screen.
- 8.2 Using the set of reference blocks spanning the thickness of the casting being inspected and overlays or electronic markers, note the flat-bottom hole indication height for each of the applicable blocks on the instrument screen. Draw a curve through these marks on the screen or on suitable graph paper. The maximum signal amplitude for the test blocks used shall peak at approximately three-fourths of the screen height above the sweep by use of the attenuator. This curve shall be referred to as the 100 % distance amplitude correction (DAC) curve. If

the attenuation of ultrasound in the casting thickness being examined is such that the system's dynamic range is exceeded, segmented DAC curves are permitted.

- 8.3 The casting examination surface will normally be rougher than that of the test blocks; consequently, employ a transfer mechanism to provide approximate compensation. In order to accomplish this, first select a region of the casting that has parallel walls and a surface condition representative of the rest of the casting as a transfer point. Next, select the test block whose overall length, C (Fig. 1), most closely matches the reflection amplitude through the block length. Place the search unit on the casting at the transfer point and adjust the instrument gain until the back reflection amplitude through the casting matches that through the test block. Using this transfer technique, the examination sensitivity in the casting may be expected to be within ± 30 % or less of that given by the test blocks.
- 8.4 Do not change those instrument controls and the test frequency set during calibration, except the attenuator, or calibrated gain control, during acceptance examination of a given thickness of the casting. Make a periodic calibration during the inspection by checking the amplitude of response from the ½-in. [6.4-mm] diameter flat-bottom hole in the test block utilized for the transfer.

Note 2—The attenuator or calibrated gain control may be used to change the signal amplitude during examination to permit small amplitude signals to be more readily detected. Signal evaluation is made by returning the attenuator or calibrated gain control to its original setting.